
A Denotational Engineering

of Programming Languages
…

Part 7: Semantic correctness of programs

(Sections 7.1 – 7.6 of the book)

Andrzej Jacek Blikle

May 21st, 2021

May 21st, 2021 A.Blikle - Denotational Engineering; part 7 (14) 2

A relational model of nondeterministic programs
S – a set of states

P, R ⊆ S x S – the denotation of a nondeterministic program

a R b – there is a finite (terminating) computation from a to b

P●R = {(a, c) | (∃ b) a P b and b R c}

In both cases

a R b and a R c

a

b

c

case 1

a

b

c

∞

case 2

The difference between

case 1 and case 2

is not expressible in this

model.

F.a = ? means no finite run i.e. no run or infinite run
There are models for

denotational treatment of

infinite executions.

A

May 21st, 2021 A.Blikle - Denotational Engineering; part 7 (14) 3

Composition of a relations with a set

Let R : Rel(S,S) and A, B ⊆S

A R = {s | (∃a:A) a R s} – left composition; the image of A by R

R B = {s | (∃b:B) s R b} – right composition; the coimage of B by R.

A R

R B

AR final states of R-executions that start in A

RB initial states of R-executions that end in B

S S S S

∞A

May 21st, 2021 A.Blikle - Denotational Engineering; part 7 (14) 4

Some properties of AR and RB

A(RQ) = (AR)Q – associativity

(RQ)B = R(QB)

(A | B) R = (AR) | (BR) – distributivity

A (R | Q) = (AR) | (AQ)

if A ⊆ B then AR ⊆ BR – monotonicity

if R ⊆ Q then AR ⊆ AQ

(U Ai) R = U (Ai R) – continuity

A (U Ri) = U (A Ri)

R (U Bi) = U (R Bi) – continuity

(U Ri) B = U (Ri B)

Some properties of AR and RB

May 21st, 2021 A.Blikle - Denotational Engineering; part 7 (14) 5

Structured programs in a relational framework

Constructors of structured programs:

P ; Q = P Q

if (C,¬C) then P else Q fi = [C] P | [¬C] Q

while (C,¬C) do P od = ([C]P)*[¬C]

i.e. the least solution of X = [C](PX) | [¬C]

[A] : Rel(S,S) – an identity relation (function); [A] = {(a, a) | a : A}

3-valued partial predicates p on S will be represented by two disjoint sets of

states

C = {s | p.s = tt}, C ∩ ¬C = Ø

¬C = {s | p.s = ff} C | ¬C ⊆ S

S – (C | ¬C) – the set of states that lead to abortion (error) or infinite executions

To distinguish between abortion and infinite execution we would need a

third set:

eC = {s | p.s : Error} We shall not exploit this option

since in the construction of correct

programs we want to avoid both –

abortion and looping.

A

May 21st, 2021 A.Blikle - Denotational Engineering; part 7 (14) 6

Program correctness
general case – possibly nondeterministic

AR ⊆ B – partial correctness wrt precondition A and postcondition B

(∀a : A) if (∃b) a R b then b : B

For every a : A, every a-execution of R which terminates, terminates in B.

A ⊆ RB – weak total correctness wrt precondition A and postcondition B

(∀a : A) (∃b) a R b and b : B

For every a : A, there is a-execution of R that terminates in B but there may be

other executions, that do not terminate in B or do not terminate at all.

None of these properties is stronger than the other!

A

May 21st, 2021 A.Blikle - Denotational Engineering; part 7 (14) 7

Program correctness in deterministic case

AF ⊆ B – partial correctness: for every a : A, if F.a = ! then F.a : B

A ⊆ FB – clean total correctness: for every a : A, F.a = ! and F.a : B

A ⊆ FB iff AF ⊆ B and F : A⟼ S

Clean partial

correctness

deterministic case – F is a function

Termination in A

halting property

własność stopu

No abortion

Clean termination = termination (no infinite execution) & non-abortion

Expressible as a property of a function due to abstract

errors (as in Lingua).

A

No error

May 21st, 2021 A.Blikle - Denotational Engineering; part 7 (14) 8

Halting property of deterministic programs

In the general case halting property of programs is not decidable,

and sometimes may be very difficult to prove.

pre n > 0

x := n;

while x > 1 do;

if even(x) then x := x/2 else x := 3x + 1 fi

post x = 1

Collatz hypothesis formulated in 1937.

So far proved only for n < 5*286.

In some practical situations

halting property may be quite

obvious.

pre n, m > 0

x := 1; y := m;

while x < n do;

x := x+1; y := y*m

post y = m^n This makes us interested

in partial correctness

of years > age of universe x 1065

with 1 ns program execution

May 21st, 2021 A.Blikle - Denotational Engineering; part 7 (14) 9

AP ⊆ B

B ⊆ C

CQ ⊆ D

A(P;Q) ⊆ D

Sequential composition Strengthening precondition

AP ⊆ B

C ⊆ A

CP ⊆ B

(A ∩ C)P ⊆ B

(A ∩ ¬C)Q ⊆ B

A if (C,¬C) then P else Q fi ⊆ B

Conditional composition; C ∩ ¬C = Ø

Proof rules for partial correctness
No recursion or iteration

Weakening postcondition

AP ⊆ B

B ⊆ C

AP ⊆ C

May 21st, 2021 A.Blikle - Denotational Engineering; part 7 (14) 10

The general case of

(mutually) recursive procedures

X1 = Ψ1.(X1,…,Xn)

…

Xn = Ψn.(X1,…,Xn)

Ψi – polynomials, e.g.

Ψ.(X,Y,Z) = P X Q Y | X Y | P Z P

There is nothing like canonical equations for recursion.

Each case has to be considered (given a rule) separately

Simple recursion

X = HXT | E

H – head

T – tail

E - exit

while is a particular case of simple recursion

X = [C]PX | [¬C] H = [C]P

T = [S]

E = [¬C]

May 21st, 2021 A.Blikle - Denotational Engineering; part 7 (14) 11

Proof rules for partial correctness
General recursion

A componentwise CPO of vectors of relations

R = (R1,…,Rn) A = (A1,…,An) B = (B1,…,Bn) n ≥ 1

there exists a family of (vectors of) preconditions {Ai | i ≥ 0}

and a family of (vectors of) postconditions {Bi | i ≥ 0} such that

(∀i ≥ 0) A ⊆ Ai

(∀i ≥ 0) Ai Ψi.Ø ⊆ Bi

U{Bi | i ≥ 0} ⊆ B

A R ⊆ B

General recursion

Let R be the least solution of X = Ψ.X,

May 21st, 2021 A.Blikle - Denotational Engineering; part 7 (14) 12

If R is the least solution of X = HXT | E then for any A, B ⊆ S the

following rules hold:

there exists a family of preconditions {Ai | i ≥ 0}

and a family of postconditions {Bi | i ≥ 0} such that

(∀i ≥ 0) A ⊆ Ai

(∀i ≥ 0) Ai HiETi ⊆ Bi

U{Bi | i ≥ 0} ⊆ B

AR ⊆ B

Version 1

Proof rules for partial correctness
simple recursion

(∀Q) (AQ ⊆ B implies A(HQT) ⊆B)

AE ⊆ B

AR ⊆ B

Version 2 For any A, B ⊆ S

May 21st, 2021 A.Blikle - Denotational Engineering; part 7 (14) 13

Then for any A, B ⊆S, any disjoint C, ¬C ⊆S, and for any P ⊆Rel(S, S)

there exists a family of postconditions {Bi | i ≥ 0} such that

(∀i ≥ 0) A ([C]P)i [¬C] ⊆ Bi

U{Bi | i ≥ 0} ⊆ B

A while (C,¬C) do P od ⊆ B

Proof rules for partial correctness
while loop

there exists N ⊆ S (called loop invariant) such that

(N∩C) P ⊆ N

A ⊆ N

N [¬C] ⊆ B

A while (C,¬C) do P od ⊆ B

to prove set

N = A([C]P)*

May 21st, 2021 14A.Blikle - Denotational Engineering; part 7 (14)

Thank you for

your attention

